organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

E-[4-(β-D-Allopyranosyloxy)phenyl]-1-(4chlorophenyl)prop-2-enone ethanol solvate

Cong-ling Yang, Hua-ling Luo, Xiu-juan Yin,* Ying Li and Shu-fan Yin

College of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China

Correspondence e-mail: chuandayouji217@163.com

Received 10 January 2009; accepted 21 February 2009

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.048; wR factor = 0.143; data-to-parameter ratio = 10.0.

The title compound, $C_{21}H_{21}ClO_7 \cdot C_2H_5OH$ was synthesized by the condensation reaction between helicid [systematic name: 4-(β -D-allopyranosyloxy)benzaldehyde] and 4-chloroacetophenone in ethanol. In the molecular structure, the pyranoside ring adopts a chair conformation. In the crystal structure, the molecules are linked by intermolecular O $-H \cdot \cdot \cdot O$ hydrogen bonds involving the OH groups from the pyranoside unit and from the ethanol solvent molecule.

Related literature

For helicid, see: Chen *et al.* (1981) and for its biological activity, see: Sha & Mao (1987). For the pharmacological activity of some helicid derivatives, see: Fan *et al.* (2007).

Experimental

Crystal data

$C_{21}H_{21}ClO_7 \cdot C_2H_6O$	b = 7.712 (3) Å
$M_r = 466.90$	c = 13.213 (4) Å
Monoclinic, P2 ₁	$\beta = 92.08 \ (2)^{\circ}$
a = 11.000 (5) Å	V = 1120.2 (8) Å ³

Z = 2Mo $K\alpha$ radiation $\mu = 0.22 \text{ mm}^{-1}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: for a sphere
[WinGX; Farrugia, 1999)]
$T_{\min} = 0.903, \ T_{\max} = 0.926$
2921 measured reflections

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.048 & \mbox{H-atom parameters constrained} \\ wR(F^2) = 0.143 & \mbox{$\Delta\rho_{max}$} = 0.43 \mbox{ e \AA^{-3}} \\ S = 1.10 & \mbox{$\Delta\rho_{min}$} = -0.30 \mbox{ e \AA^{-3}} \\ 2815 \mbox{ reflections} & \mbox{Absolute structure: Flack (1983),} \\ 281 \mbox{ parameters} & 562 \mbox{ Friedel pairs} \\ 1 \mbox{ restraint} & \mbox{ Flack parameter: 0.14 (12)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{l} O2 - H2O \cdots O3^{i} \\ O4 - H4O \cdots O2^{ii} \\ O5 - H5O \cdots O8^{ii} \end{array}$	0.82	2.02	2.809 (4)	160
	0.82	1.88	2.694 (4)	171
	0.82	1.97	2.696 (5)	148

T = 292 K

 $R_{\rm int} = 0.008$ 3 standard reflections

 $0.48 \times 0.44 \times 0.36 \text{ mm}$

2815 independent reflections 2305 reflections with $I > 2\sigma(I)$

every 200 reflections intensity decay: 1.4%

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z; (ii) x, y + 1, z.

Data collection: *DIFRAC* (Gabe & White, 1993); cell refinement: *DIFRAC*; data reduction: *NRCVAX* (Gabe *et al.*, 1989); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2216).

References

Chen, W. S., Lu, S. D. & Breitmaier, E. (1981). *Liebigs Ann. Chem.* pp. 1893–1895.

Fan, B., Li, J.-L., Li, Y. & Yin, S.-F. (2007). Chin. J. Org. Chem. 27, 1150–1154.Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.
- Gabe, E. J. & White, P. S. (1993). *DIFRAC*. American Crystallographic Association, Pittsburgh meeting. Abstract PA 104.
- Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27-30.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2009). E65, o634 [doi:10.1107/S1600536809006424]

E-[4-(β -D-Allopyranosyloxy)phenyl]-1-(4-chlorophenyl)prop-2-enone ethanol solvate

C. Yang, H. Luo, X. Yin, Y. Li and S. Yin

Comment

The natural compound helicid, 4-(β -D-allopyranosyloxy)benzaldehyde, which is extracted from the fruit of *Helicia nilagirica Beed* (Chen *et al.*, 1981) is a major active ingredient of Chinese herbal medicine. It has good biological effects on the central nervous system with a low toxicity (Sha & Mao, 1987). Some helicid derivatives have been reported with good pharmacological activities (Fan *et al.*, 2007). The title compound, a new helicid derivative, was synthesized *via* reaction of helicid and 4-chloroacetophenone, in good yield.

In the molecule of the title compound (Fig. 1), the average of C—C bond lengths in the six-membered pyranoside ring is 1.522(5) Å. The average C(sp^3)—O and C(sp^2)—O bond lengths are 1.414(5) and 1.392(4) Å, respectively. The pyranoside ring adopts a chair conformation with hydroxyl group at C3 in axial position and the other substituents at C1, C2 and C4, in equatorial positions.

In the crystal packing, the molecules are connected by intermolecular O—H….O hydrogen bonds (Table 1) involving O1 and O7 atoms and the hydroxyl groups in the main molecule and in the ethanol solvent molecule, forming a three-dimensional network.

Experimental

To a solution of helicid (1.420 g, 5 mmol) in ethanol (20 ml), 10% aqueous solution of sodium hydroxide was added until helicid was dissolved completely. Then 4-chloroacetophenone (0.847 g, 5.5 mmol) was added dropwise, with the vessel placed in an ice bath. The reaction was monitored by TLC. After the reaction completed, the mixture was cooled to room temperature, and then neutralized with diluted hydrochloric acid. The solution was extracted three times with ethyl acetate, and the combined organic layers were dried with anhydrous Na₂SO₄, filtered, and evaporated *in vacuo* to get the crude product. The title compound was recrystallized twice from ethanol, and colourless single crystals were finally obtained by slow evaporation of an ethanol solution, at room temperature.

Refinement

H atoms were positioned geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ (methylene C, aromatic C) or $U_{iso}(H) = 1.5U_{eq}$ (O). The absolute configuration was determined by refinement of a Flack parameter, based on 562 measured Friedel pairs (Flack, 1983), and is in agreement with the expected configuration from the synthetic route.

Figures

Filmer Filmer

Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.

E-[4-(β-D-Allopyranosyloxy)phenyl]-1-(4-chlorophenyl)prop-2-enone ethanol solvate

Crystal data	
$C_{21}H_{21}ClO_7 \cdot C_2H_6O$	$F_{000} = 492$
$M_r = 466.90$	$D_{\rm x} = 1.384 {\rm Mg m}^{-3}$
Monoclinic, P2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 19 reflections
a = 11.000 (5) Å	$\theta = 4.5 - 7.4^{\circ}$
b = 7.712 (3) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 13.213 (4) Å	T = 292 K
$\beta = 92.08 \ (2)^{\circ}$	Block, colourless
V = 1120.2 (8) Å ³	$0.48 \times 0.44 \times 0.36 \text{ mm}$
Z = 2	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.008$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.5^{\circ}$
T = 292 K	$h = -13 \rightarrow 13$
$\omega/-2\theta$ scans	$k = -9 \rightarrow 9$
Absorption correction: for a sphere [WinGX; Farrugia, 1999)]	<i>l</i> = −15→15
$T_{\min} = 0.903, \ T_{\max} = 0.926$	3 standard reflections
2921 measured reflections	every 200 reflections
2815 independent reflections	intensity decay: 1.4%
2305 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.099P)^2 + 0.0279P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.143$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.10	$\Delta \rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$
2815 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

281 parametersExtinction correction: SHELXL97 (Sheldrick, 2008),
 $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ 1 restraintExtinction coefficient: 0.056 (7)Primary atom site location: structure-invariant direct
methodsAbsolute structure: Flack (1983), 562 Friedel pairsSecondary atom site location: difference Fourier mapFlack parameter: 0.14 (12)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	1.19712 (12)	0.6652 (2)	1.29357 (8)	0.0730 (4)
01	0.6580 (2)	0.7216 (3)	0.27293 (17)	0.0385 (6)
O2	0.5789 (3)	0.4472 (3)	0.1477 (2)	0.0478 (7)
H2O	0.5624	0.4470	0.0867	0.072*
O3	0.4614 (2)	0.8598 (4)	0.05711 (19)	0.0469 (7)
H3O	0.4201	0.9331	0.0848	0.070*
O4	0.5518 (3)	1.1087 (3)	0.1920 (2)	0.0452 (7)
H4O	0.5665	1.2117	0.1830	0.068*
O5	0.8179 (2)	1.1280 (4)	0.2200 (2)	0.0481 (7)
H5O	0.7732	1.2009	0.2443	0.072*
O6	0.8220 (2)	0.8419 (4)	0.35453 (16)	0.0423 (6)
O7	0.7388 (3)	0.5708 (5)	0.9598 (2)	0.0564 (8)
C1	0.5463 (3)	0.7382 (5)	0.2130 (2)	0.0353 (8)
H1	0.4880	0.8055	0.2513	0.042*
C2	0.5718 (4)	0.8348 (5)	0.1143 (3)	0.0376 (8)
H2	0.6262	0.7634	0.0745	0.045*
C3	0.6344 (3)	1.0062 (5)	0.1375 (3)	0.0386 (8)
Н3	0.6536	1.0646	0.0742	0.046*
C4	0.7517 (3)	0.9739 (5)	0.2010 (3)	0.0373 (8)
H4	0.8030	0.8947	0.1633	0.045*
C5	0.7157 (3)	0.8832 (5)	0.2974 (3)	0.0379 (8)
H5	0.6621	0.9570	0.3365	0.046*
C6	0.4973 (4)	0.5577 (5)	0.1971 (3)	0.0431 (9)
H6A	0.4793	0.5079	0.2623	0.052*
H6B	0.4217	0.5640	0.1571	0.052*
C7	0.8102 (3)	0.7956 (5)	0.4555 (3)	0.0401 (9)
C8	0.6991 (3)	0.7808 (6)	0.4999 (3)	0.0468 (10)
H8	0.6269	0.8012	0.4631	0.056*
С9	0.6987 (3)	0.7340 (6)	0.6024 (3)	0.0475 (9)
Н9	0.6247	0.7247	0.6338	0.057*
C10	0.8041 (3)	0.7015 (5)	0.6579 (3)	0.0423 (9)
C11	0.9136 (4)	0.7145 (6)	0.6094 (3)	0.0497 (10)
H11	0.9861	0.6905	0.6450	0.060*
C12	0.9159 (4)	0.7624 (6)	0.5098 (3)	0.0490 (10)
H12	0.9901	0.7725	0.4787	0.059*
C13	0.7923 (3)	0.6580 (6)	0.7646 (3)	0.0469 (9)
H13	0.7131	0.6442	0.7855	0.056*
C14	0.8794 (3)	0.6351 (6)	0.8365 (3)	0.0454 (9)
H14	0.9610	0.6407	0.8206	0.054*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C15	0.8446 (3)	0.6010 (5)	0.9412 (3)	0.0409 (9)
C16	0.9379 (3)	0.6058 (5)	1.0255 (3)	0.0379 (8)
C17	0.9023 (4)	0.5637 (5)	1.1225 (3)	0.0444 (9)
H17	0.8234	0.5253	1.1321	0.053*
C18	0.9827 (4)	0.5781 (6)	1.2042 (3)	0.0480 (10)
H18	0.9586	0.5490	1.2688	0.058*
C19	1.0986 (4)	0.6360 (5)	1.1897 (3)	0.0453 (9)
C20	1.1381 (4)	0.6725 (6)	1.0948 (3)	0.0489 (10)
H20	1.2180	0.7066	1.0859	0.059*
C21	1.0571 (3)	0.6578 (5)	1.0122 (3)	0.0420 (9)
H21	1.0829	0.6830	0.9475	0.050*
O8	0.7509 (3)	0.3817 (5)	0.3469 (3)	0.0700 (10)*
H8A	0.6815	0.3984	0.3242	0.105*
C22	0.7467 (4)	0.3290 (7)	0.4506 (3)	0.0590 (11)*
H22A	0.7872	0.4154	0.4931	0.071*
H22B	0.7903	0.2204	0.4596	0.071*
C23	0.6220 (6)	0.3068 (9)	0.4826 (5)	0.0845 (16)*
H23A	0.5798	0.2276	0.4377	0.127*
H23B	0.5812	0.4168	0.4810	0.127*
H23C	0.6231	0.2614	0.5503	0.127*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0730 (8)	0.1004 (10)	0.0442 (6)	0.0021 (8)	-0.0177 (5)	-0.0029 (6)
01	0.0469 (14)	0.0345 (11)	0.0336 (12)	0.0010 (12)	-0.0078 (11)	0.0031 (11)
02	0.0706 (19)	0.0373 (14)	0.0350 (14)	0.0064 (14)	-0.0040 (14)	-0.0004 (11)
03	0.0485 (16)	0.0526 (16)	0.0388 (14)	0.0065 (14)	-0.0115 (12)	0.0005 (13)
O4	0.0499 (16)	0.0336 (13)	0.0525 (16)	0.0062 (12)	0.0054 (12)	0.0011 (12)
05	0.0461 (15)	0.0473 (15)	0.0513 (16)	-0.0075 (13)	0.0087 (12)	-0.0051 (13)
O6	0.0363 (13)	0.0620 (16)	0.0284 (12)	0.0025 (13)	-0.0022 (10)	0.0014 (12)
07	0.0444 (16)	0.084 (2)	0.0410 (14)	-0.0089 (16)	0.0028 (12)	0.0011 (15)
C1	0.0376 (19)	0.0380 (17)	0.0299 (17)	0.0017 (15)	-0.0021 (15)	0.0000 (15)
C2	0.045 (2)	0.0357 (17)	0.0313 (17)	0.0040 (17)	-0.0020 (16)	0.0036 (16)
C3	0.048 (2)	0.0377 (18)	0.0303 (17)	0.0028 (17)	0.0023 (15)	0.0054 (15)
C4	0.042 (2)	0.0375 (18)	0.0325 (18)	0.0025 (16)	0.0023 (15)	-0.0031 (15)
C5	0.038 (2)	0.0394 (19)	0.0358 (19)	-0.0007 (16)	-0.0045 (16)	-0.0031 (15)
C6	0.047 (2)	0.0405 (19)	0.042 (2)	-0.0029 (18)	-0.0032 (17)	0.0031 (16)
C7	0.0409 (19)	0.047 (2)	0.0323 (18)	0.0004 (18)	-0.0026 (15)	-0.0035 (15)
C8	0.0351 (19)	0.070 (3)	0.0353 (18)	0.005 (2)	-0.0038 (15)	0.0006 (18)
C9	0.0367 (19)	0.070 (3)	0.0360 (19)	0.0027 (19)	0.0038 (16)	0.001 (2)
C10	0.042 (2)	0.054 (2)	0.0309 (17)	0.0017 (19)	-0.0012 (15)	0.0003 (17)
C11	0.040 (2)	0.072 (3)	0.0367 (19)	0.003 (2)	-0.0089 (16)	0.004 (2)
C12	0.040 (2)	0.070 (3)	0.0373 (19)	-0.001 (2)	0.0023 (16)	-0.0004 (19)
C13	0.045 (2)	0.061 (2)	0.0337 (18)	0.001 (2)	-0.0011 (16)	0.0002 (19)
C14	0.042 (2)	0.061 (2)	0.0332 (18)	-0.004 (2)	0.0007 (16)	0.0007 (18)
C15	0.042 (2)	0.046 (2)	0.0349 (18)	-0.0024 (17)	0.0034 (16)	-0.0016 (16)
C16	0.046 (2)	0.0378 (18)	0.0298 (17)	-0.0009 (17)	0.0019 (15)	0.0024 (15)

C17 C18	0.043 (2) 0.058 (2)	0.051 (2) 0.056 (2)	0.040 (2) 0.0296 (18)	0.0053 (18) 0.009 (2)	0.0057 (16) 0.0033 (17)	0.0038 (17) 0.0043 (17)
C19	0.055 (2)	0.047 (2)	0.0336 (18)	0.003 (2)	-0.0049 (16)	0.0001 (17)
C20	0.045 (2)	0.056 (3)	0.045 (2)	-0.006 (2)	0.0004 (17)	0.003 (2)
C21	0.046 (2)	0.048 (2)	0.0321 (17)	-0.0023 (19)	0.0013 (15)	0.0031 (17)
Geometric paran	neters (Å, °)					
Cl1—C19		1.732 (4)	C9—C1	0	1.372	(5)
O1—C5		1.431 (4)	С9—Н9		0.9300)
O1—C1		1.443 (4)	C10—C	11	1.389	(5)
O2—C6		1.414 (5)	C10—C	13	1.460	(5)
O2—H2O		0.8200	C11—C	12	1.368	(6)
O3—C2		1.420 (4)	С11—Н	11	0.9300)
O3—H3O		0.8200	С12—Н	12	0.9300)
O4—C3		1.420 (5)	С13—С	14	1.336	(5)
O4—H4O		0.8200	С13—Н	13	0.9300)
O5—C4		1.412 (5)	C14—C	15	1.473	(5)
O5—H5O		0.8200	С14—Н	14	0.9300)
O6—C7		1.392 (4)	C15—C	16	1.488	(5)
O6—C5		1.404 (4)	C16—C	21	1.389	(5)
O7—C15		1.221 (5)	C16—C	17	1.392	(5)
C1—C6		1.505 (5)	С17—С	18	1.376	(5)
C1—C2		1.537 (5)	С17—Н	17	0.9300)
C1—H1		0.9800	C18—C	19	1.371	(6)
C2—C3		1.516 (5)	С18—Н	18	0.9300)
C2—H2		0.9800	C19—C	20	1.371	(6)
C3—C4		1.533 (5)	C20—C	21	1.388	(5)
С3—Н3		0.9800	С20—Н	20	0.9300)
C4—C5		1.519 (5)	С21—Н	21	0.9300)
C4—H4		0.9800	O8—C2	2	1.431	(5)
C5—H5		0.9800	O8—H8	A	0.8200)
C6—H6A		0.9700	С22—С	23	1.460	(7)
C6—H6B		0.9700	С22—Н	22A	0.9700)
C7—C12		1.368 (5)	С22—Н	22B	0.9700)
С7—С8		1.379 (5)	С23—Н	23A	0.9600)
С8—С9		1.402 (5)	С23—Н	23B	0.9600)
C8—H8		0.9300	С23—Н	23C	0.9600)
C5—O1—C1		114.1 (3)	C8—C9	—Н9	119.0	
C6—O2—H2O		109.5	C9—C1	0—C11	118.1	(3)
С2—О3—НЗО		109.5	C9—C1	0—C13	117.1	(3)
C3—O4—H4O		109.5	C11—C	10—C13	124.8	(3)
C4—O5—H5O		109.5	C12—C	11—C10	120.7	(3)
C7—O6—C5		117.9 (3)	C12—C	11—H11	119.7	
O1—C1—C6		106.7 (3)	C10—C	11—H11	119.7	
O1—C1—C2		109.3 (3)	C11—C	12—C7	120.7	(4)
C6—C1—C2		113.9 (3)	C11—C	12—H12	119.7	
O1—C1—H1		108.9	C7—C1	2—Н12	119.7	
C6—C1—H1		108.9	C14—C	13—C10	129.1	(4)

C2—C1—H1	108.9	C14—C13—H13	115 5
03-C2-C3	111.2 (3)	C10—C13—H13	115.5
03 - C2 - C1	109.8 (3)	C13 - C14 - C15	119.1 (3)
C_{3} C_{2} C_{1}	110 3 (3)	C13—C14—H14	120.4
03 - C2 - H2	108.5	C15-C14-H14	120.1
C3—C2—H2	108.5	07—C15—C14	120.4(3)
C1-C2-H2	108.5	07—C15—C16	1194(3)
$04 - C_{3} - C_{2}$	107.1 (3)	C_{14} C_{15} C_{16}	120.2(3)
04	1107(3)	C_{21} C_{16} C_{17}	120.2(3) 1189(3)
$C_2 - C_3 - C_4$	109.6 (3)	$C_{21} = C_{16} = C_{15}$	122.8 (3)
04—C3—H3	109.8	C17 - C16 - C15	122.0(3) 118.3(3)
C2-C3-H3	109.8	C18 - C17 - C16	120.7(4)
C4—C3—H3	109.8	C18 - C17 - H17	119.7
05 - C4 - C5	112 7 (3)	C16-C17-H17	119.7
05 - C4 - C3	112.7 (3)	C19-C18-C17	119.4 (4)
$C_{5} - C_{4} - C_{3}$	1071(3)	C19-C18-H18	120.3
05 - C4 - H4	108.2	C17_C18_H18	120.3
C_{5} C_{4} H_{4}	108.2	C_{18} C_{19} C_{20}	120.5 121.5(4)
C3_C4_H4	108.2	$C_{18} - C_{19} - C_{20}$	121.3(4)
06-05-01	106.1 (3)	$C_{10} - C_{10} - C_{11}$	119.3(3)
06 - C5 - C4	108.6 (3)	C_{19} C_{20} C_{17} C_{11}	119.2(3)
01 - 05 - 04	100.8 (3)	$C_{10} = C_{20} = H_{20}$	120.4
06-05-45	109.8 (5)	$C_{1} = C_{20} = H_{20}$	120.4
01_C5_H5	110.8	$C_{21} = C_{20} = 1120$	120.4
C4_C5_H5	110.8	C20-C21-H21	120.3 (4)
02 - 06 - 01	113.1 (3)	$C_{20} = C_{21} = H_{21}$	119.8
02 - 00 - 01	100.0	$C_{10} = C_{21} = H_{21}$	109.5
$C_2 = C_0 = H_0 A$	109.0	C_{22} C_{23} C_{23} C_{23}	109.3
$C_1 = C_0 = H_0 R_0$	109.0	08 C22 C23	112.0 (4)
C1 C6 H6P	109.0	C_{22} C_{22} H_{22A}	109.2
	109.0	C_{23} C_{22} H_{22R}	109.2
10A - C0 - 10B	107.8	C_{22} C	109.2
$C_{12} - C_{7} - C_{8}$	120.7(3)		109.2
$C_{12} - C_{7} - 06$	110.4(3) 122.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.9
$C_{3} - C_{7} - C_{9} - C_{9}$	122.9(3)	C_{22} C_{23} C	109.5
$C_{1} = C_{0} = C_{2}$	117.0 (5)		109.5
$C_{1} = C_{8} = H_{8}$	121.1	$\Pi 23A - C23 - \Pi 23B$	109.5
$C_{9} = C_{8} = H_{8}$	121.1	$C_{22} = C_{23} = H_{23}C$	109.5
$C_{10} = C_{9} = C_{8}$	122.0 (4)	$H_{23} = C_{23} = H_{23} C_{23}$	109.5
	119.0		109.5
C5-01-C1-C6	-1/8.6(3)	C/C8C9C10	-0.7(7)
$C_{5} = 01 = C_{1} = C_{2}$	57.8 (4)	C8-C9-C10-C11	-0.6 (7)
01 - C1 - C2 - 03	-17/.0(3)	C8-C9-C10-C13	1/8.6 (4)
C6-C1-C2-O3	63.7 (4)	C9—C10—C11—C12	1.5 (7)
01 - C1 - C2 - C3	-54.1 (4)	C13—C10—C11—C12	-177.6 (4)
C6 - C1 - C2 - C3	-1/3.4(3)	C10—C11—C12—C7	-1.1(7)
03-C2-C3-04	58.7 (4)	C8—C7—C12—C11	-0.2 (7)
C1—C2—C3—O4	-63.3 (4)	06—C/—C12—C11	-179.5 (4)
03—C2—C3—C4	178.9 (3)	C9—C10—C13—C14	-173.8 (4)
C1—C2—C3—C4	56.8 (4)	C11—C10—C13—C14	5.2 (7)

O4—C3—C4—O5	-65.5 (4)	C10-C13-C14-C15	176.6 (4)
C2—C3—C4—O5	176.5 (3)	C13—C14—C15—O7	9.8 (6)
O4—C3—C4—C5	58.7 (4)	C13-C14-C15-C16	-169.3 (4)
C2—C3—C4—C5	-59.2 (4)	O7-C15-C16-C21	-172.7 (4)
C7—O6—C5—O1	-76.9 (4)	C14-C15-C16-C21	6.4 (6)
C7—O6—C5—C4	165.2 (3)	O7-C15-C16-C17	4.3 (5)
C1-01-C5-06	-179.6 (3)	C14—C15—C16—C17	-176.6 (4)
C1C5C4	-62.5 (4)	C21—C16—C17—C18	1.9 (6)
O5—C4—C5—O6	-59.6 (4)	C15—C16—C17—C18	-175.2 (3)
C3—C4—C5—O6	176.3 (3)	C16-C17-C18-C19	0.5 (6)
O5—C4—C5—O1	-175.2 (3)	C17-C18-C19-C20	-2.9 (6)
C3—C4—C5—O1	60.8 (3)	C17-C18-C19-Cl1	176.6 (3)
O1—C1—C6—O2	-58.8 (4)	C18-C19-C20-C21	2.9 (6)
C2-C1-C6-O2	61.8 (4)	Cl1—C19—C20—C21	-176.6 (3)
C5-06-C7-C12	-177.7 (3)	C19—C20—C21—C16	-0.4 (6)
C5—O6—C7—C8	3.1 (6)	C17-C16-C21-C20	-2.0 (6)
С12—С7—С8—С9	1.1 (6)	C15-C16-C21-C20	175.1 (4)
O6—C7—C8—C9	-179.7 (4)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!\!\!\!\!\!\!$
O2—H2O···O3 ⁱ	0.82	2.02	2.809 (4)	160
O4—H4O···O2 ⁱⁱ	0.82	1.88	2.694 (4)	171
O5—H5O…O8 ⁱⁱ	0.82	1.97	2.696 (5)	148
O3—H3O···O7 ⁱⁱⁱ	0.82	2.11	2.741 (4)	134
O3—H3O…O4	0.82	2.41	2.779 (4)	109
O8—H8A…O1	0.82	2.59	2.966 (5)	109

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) *x*, *y*+1, *z*; (iii) -*x*+1, *y*+1/2, -*z*+1.

